

New Tools for Estimating Emissions from Land Use Activities

Tracking carbon between land and atmosphere

Technolog Institute of the Environment and Sustainability Sassan Saatchi Senior Research Scientist JPL/CALTECH

> CTrees.org Co-founder & CEO

1

Outline

- Advances in remote sensing-based forest carbon monitoring
- Methodology & products to meet LULUCF reporting requirements
- Uncertainty & challenges
- Steps towards integrating RS techniques in global stocktake

Use remote sensing technology, AI, and inventory to set baselines of carbon stocks and activity data MEASURE 80 谷谷 \bigcirc REPORT VERIFY 3 Build confidence on Report emissions and estimates, trends, and removals over time and impacts by transparent track progress and science-based data impacts

NASA OCO-2 Observations

PlanetScope

ICESat-2 2018

CTrees Methodology for Reporting LULUCF Emissions

CTrees State of Reporting & Global Assessment

CTrees RS-based Land Emissions & Removals

- **Global and geospatial** •
 - Carbon stock change
 - Satellite and Inventory observations
- Land use activities ۲
 - Deforestation (forest conversion)
 - Degradation (forest remaining forest)
 - Fire
- **Emissions** ٠
 - Pixel level emissions
 - Committed emissions
 - Direct and indirect
- **Removals** ۲
 - Stock change
 - **Global Forest Productivity model**
- Uncertainty •
 - Error propagation
 - Spatial uncertainty assessment
 - Comparison with country level data

t2

Deforestation

7/10/24

Carbon Stock Changes 2000-2023

- Develop systematic and spatially explicit bottom-up estimates of • global live woody vegetation biomass stock changes annually from 2000 to 2023.
- Develop space for time analysis combined with inventory data to • model forest productivity

Carbon Stock

300

Forest Inventory: Necessary but not Sufficient

10-20% of inventory plots collected annually

CTrees Harmonizing National Inventory in Space & Time

Yu et al. ERL 2022

Emissions and Removals

CTrees Data Products

Carbon stocks in all forest & non-forest land globally 2000-2023 Biomass carbon regrowth model at landscape scale & driven by climate eforestation, forest degradation, & regeneration Near-real-time I information on disturbances in forests worldwide

emissions, & removals at national & sub-national Map of individual trees at local to national

CTrees Comparison of RS-based GHG Inventory with Country Reports

- Challenge 1: Forest Area
 - Definition of forest
 - Managed & Unmanaged

Challenge 2: Carbon Stocks

- NFI data
- Cycle of NFI & Interpolation
- Accuracy vs Precision

• Challenge 3: Carbon Stock Change

- Definition (NFI or Area-based)
- Emissions
- Removals

Challenge 1: Forest Area

FAO	World total	4051 (Mha)
NGHGI	World total	3605 (Mha) (managed)
RS	World total	4190 (Mha)

Global: 139mha, RS is 3.4% higher than FAO AI: 13mha, RS is 0.86% higher than FAO of total forest area in AI NAI: 123mha, RS is 5.6% higher that FAO of total forest area in NAI

7/10/24

Challenge 1: Forest Area

Challenge 1: Forest Area

Forest Area Change by FAO (2020 minus 2015)

Forest Area Change by RS (2020 minus 2015)

Forest Area Change [2020 minus 2015]

Challenge 2: Carbon Stocks

- Emission factors in AI countries are similar but differ in NAI countries
- NAI countries do not have national inventory (i.e. Brazil, DRC, etc.)
- Forest cover/definition in NAI countries influence the comparison.

Challenge 2: Carbon Stocks

Carbon Stock Difference between RS and FAO (RS-FAO: TgC) 2000-2020 Mean

-2000-1000 0 1000 2000

Challenge 3: Carbon Flux (Emissions)

• Due to the fact that forest clearing is calculated as committed emission, that the

- AI counties: forest clearing emission > deforestation emission (HWP sink is included in the NGHGI report)
- NAI counties: forest clearing emission < deforestation emission (deforestation fire is included in the NGHGI report, but excluded from the forest clearing

7/10/24

Challenge 3: Carbon Flux (Emissions)

- AI countries: deforestation = forest clearing flux HWP. [note, HWP here assume committed HWP emission once deforestation occurs, while NGHGI use decay curve to calculate the HWP emission]
- NAI: forest fire emission was added to deforest flux for certain tropical countries. 7/10/24

Challenge 3: Carbon Flux (Emissions)

- Larger differences in stock changes among estimates
- Tropics remain the largest difference in estimates
- HWP and fire emissions are the largest source of differences in AI countries

Deforestation Carbon Emission (RS: TgC yr-1) Mean (2000-2020)

TgC yr-1

Deforestation Carbon Emission (FAO: TgC yr-1) Mean (2000-2020)

Challenge 3: Carbon Flux (Removal)

Replaced by Zhihua

Databas e	Region	Gross Carbon removal flux (TgC/yr)	
FAO	AI	-504	
FAO	NAI	-374	
NGHGI	AI	-624	
NGHGI	NAI	-1186	
RS	AI	-604	
RS	NAI	-1439	
FAO	World total	-878	
NGHGI	World total	-1810	
RS	World total	-2042	

Gross forest C removal is calculated as:

RS: ΔC + emission from degradation and forest fire (i.e., emission from forest land)

7/10/24

Challenge 3: Carbon Flux (Removal)

HWP is included in the RS calculation HWP Carbon sink for AI: 253TgC/yr (931 TgCO2/yr), HWP Carbon sink for NAI: 171 TgC/yr (628 GtCO2/yr)

Dat	abase	Region	net forest Carbon flux w/HWP (TgC/yr)	Non-forest region (TC < 20%)
F	AO	AI	-443	
F	AO	NAI	494	
NC	GHGI	AI	-556 (-511 if HWP [-44]removed)	
NC	GHGI	NAI	-72 (-34 if HWP[-38] removed)	
I	RS	AI	-360	-78
1	RS	NAI	-189	-276
F	AO	World total	50	
NC	GHGI	World total	-627 (-546 if HWP[-82] removed)	
)	RS	World total	-549	-353

CTrees Challenge 3: Carbon Flux (Removal)

- Based on forest age inferred from the biomass map at 2020 (forest age at 2020) and our growth curve parameters (A/k/m)
- Forest C removal (TC > 10%, stockchange approach)
 - 2000 2020: -1.83 PgC yr⁻¹;
 - 2020-2050: -1.76 PgC yr⁻¹;
- Other results (forest removal):
 - Grassi et al., -1.75 PgC yr⁻¹ (2000- 2020)
 - FAO: -0.87 PgC yr⁻¹ (2000- 2020)

Summary

- RS-based estimates of forest area, carbon stocks are ready to improve national reporting
 - Harmonizing forest area definition & consistent monitoring
 - For countries with NFI, RS-based estimates can improve precision after removing the bias
 - For countries with no NFI, RS-based estimates can be used for reporting and monitoring
 - Inclusion of RS measurements to harmonize NFI across AI countries and improve NFI cycle interpolation
- RS measurements and new tools are improving significantly
 - GEDI, NISAR, and BIOMASS missions are solutions to MRV and global stocktake
 - Generative AI and VHR satellite data improve attributions of LULUCF emissions
- Role of UNFCCC to encourage improved GHG inventory
 - Increasing NFI data acquisition across global south
 - Separating natural and agroforestry systems, reporting on managed and unmanaged
 - Recommendation of using RS-based estimates in national reporting